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Abstract

A coupled two-cell Brusselator system subject to Neumann boundary conditions is considered.
Firstly, we obtain the global existence of classical solutions for the system. Then, with the aim
of showing the model dynamics, we develop a positivity preserving splitting technique to find
the numerical solution of the proposed model. The numerical scheme leads to the convergence
of the solution to a steady-state or to the equilibrium point.
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1 Introduction

Since the revolutionary research published by A. Turing in the early 1950s [1] regarding the chemical
basis of formation, the model proposed by him received great interest from the research community
in the fields of mathematics, biology, chemistry and many others [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13].
The Brusselator system is a simple system of reaction-diffusion equations occurring in biochemical
reactions, chemical kinetics and biological processes. It was first proposed by Prigogine and Lefever
in 1968 (cf. [14]) and was given its current name by Tyson in 1973 (cf. [15]). The Brusselator
chemical reaction can be represented by the following mechanism:

A→ X,

2X + Y → 3X,

B +X → Y +D,

X → E,

(1.1)

where X and Y are intermediates, A and B are input chemicals with a constant concentration,
and D and E are output chemicals. The steps in (1.1) yield the nondimensionalized Brusselator
reaction-diffusion system

∂u
∂t = d1

∂2u
∂x2 + a− (b+ 1)u+ u2v, x ∈ (0, l), t > 0

∂v
∂t = d2

∂2v
∂x2 + bu− u2v, x ∈ (0, l), t > 0

(1.2)

subject to the homogeneous Dirichlet or Neumann boundary conditions and initial data. In this
system, the reactions occur in an interval (0, l), l > 0, u := u(x, t) and v := v(x, t) are the chemical
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concentrations of an activator and an inhibitor, respectively, and d1, d2, a, b are positive numbers.
The Brusselator system (1.2) has drawn the attention of various researchers who have obtained
interesting analytical and numerical results [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. In
general, numerous numerical schemes have been proposed for solving evolutionary partial differential
equations [30, 31, 32, 33, 34, 35, 36, 37, 38].

In the present work, we consider the coupled two-cell Brusselator model

ut − d1∆u = a− (b+ 1)u+ u2v + c(w − u) in Ω× (0, T )
vt − d2∆v = bu− u2v in Ω× (0, T )
wt − d3∆w = a− (b+ 1)w + w2z + c(u− w) in Ω× (0, T )
zt − d4∆z = bw − w2z in Ω× (0, T )
∂νu = ∂νv = ∂νw = ∂νz = 0 on ∂Ω× (0, T )
u(x, 0) = u0(x), v(x, 0) = v0(x) on Ω̄
w(x, 0) = w0(x), z(x, 0) = z0(x) on Ω̄

(1.3)

where u := u(x, t), v := v(x, t), w := w(x, t), z := z(x, t), Ω := (Lin, Lend), Lin > 0, d1, d2, d3, d4,
a, b, c, Lend and T are positive numbers, ∆ is the Laplacian operator on Ω, and ν is the unit outer
normal to ∂Ω. Some results have been reported regarding the dynamics of the coupled two-cell
Brusselator model (1.3) with/without modifications on the system [39, 40, 41]. R.D. Parshad et al.
[42] proved the global existence for system (1.3) subject to the homogeneous Dirichlet boundary
conditions.

In this paper, we are primarily interested in continuing the work on the two-cell Brusselator
model (activator-inhibitor system), in which we demonstrate the global existence of classical solution
for system (1.3) by using a suitable Lyapunov-type function (cf. J. Morgan [19]). In addition, we
develop an efficient explicit unconditionally numerical scheme which preserves positivity of the
solution for system (1.3). To affirm our findings, numerical examples will be presented.

2 Global existence of solutions

The main step toward the result is to establish a so called Lyapunov-type function H ∈ C2(R4
+;R)

with hi ∈ C2(R+;R) for i = 1, . . . , 4 such that

H(z) =

4∑
i=1

hi(zi), z = (zi)
4
i=1 ∈ R4

+, (2.1)

with
hi(zi), h

′′
i (zi) ≥ 0, zi ∈ R+, i = 1, . . . , 4, (2.2)

and
H(z) −→∞, if and only if |z| −→ ∞ in R4

+, (2.3)

Assume there exists a lower triangular matrix A = (aij)16i,j64 ∈ R4 × R4 which satisfies aij > 0,
aii > 0 for 1 6 i, j,6 4 such that for all 1 6 l 6 4 there exist K1,K2 > 0 independent of l, in which

l∑
j=1

ajlh
′
j(zj)fj(z) ≤ K1H(z) +K2, z ∈ R4

+. (2.4)



Global existence and numerical simulations of activator-inhibitor system 41

Also, assume that there exist q,K3,K4 > 0 such that for 1 6 i 6 4,

h′i(zi)fi(z) ≤ K3(H(z))q +K4, z ∈ R4
+. (2.5)

Furthermore, assume that there exist K5,K6 > 0 such that

∇H(z).f(z) ≤ K5H(z) +K6, z ∈ R4
+. (2.6)

Based on J. Morgan’s method (cf. [19]), we get the following result

Theorem 2.1. Consider the initial conditions u0, v0, w0, z0 ∈ L∞(Ω; (0,+∞)). Then, there exists
a unique positive global (i.e. T =∞) classical solution for the coupled two-cell Brusselator system
(1.3).

Proof. At the outset, we swap variables u and v as well as w and z in the coupled two-cell Brusselator
system (1.3), which yields the equivalent system

ut − d1∆u = f1(U) in Ω× (0, T )
vt − d2∆v = f2(U) in Ω× (0, T )
wt − d3∆w = f3(U) in Ω× (0, T )
zt − d4∆z = f4(U) in Ω× (0, T )
∂νu = ∂νv = ∂νw = ∂νz = 0 on ∂Ω× (0, T )
u(x, 0) = u0(x), v(x, 0) = v0(x) on Ω̄
w(x, 0) = w0(x), z(x, 0) = z0(x) on Ω̄

(2.7)

where U := (u, v, w, z) and

f1(U) :=bv − uv2,

f2(U) :=a− (b+ 1)v + uv2 + c(z − v),

f3(U) :=bz − wz2,

f4(U) :=a− (b+ 1)z + wz2 + c(v − z).

The local existence of a solution for system (1.3) results from the well-known semigroup theory (cf.
[43, 44]). We choose hi(zi) = zi for i = 1, . . . 4, and A = (aij)16i,j64 such that

aij :=

{
1 if i > j
0 else

Then, conditions (2.1)-(2.6) are fulfilled. q.e.d.

Remark 2.2. The proof of Theorem 2.1 remains effective when Ω in an open subset of Rn(n ∈ N)
that is both smooth and bounded (cf. [19]). The same results can also be obtained with a wider
class of boundary conditions by using the method of S. Abdelmalek and S. Kouachi (cf. [45]).

3 Numerical method

3.1 Discretization of domain

We aim to show the approximate solutions of system (1.3) by applying the finite difference method.
We consider the numerical approximation in the time domain [0, T ] and the space domain [Lin, Lend].
Let tk = k∆t (0 6 tk 6 T ), k = 0, . . . ,M , xi = Lin + i∆x (Lin 6 xi 6 Lend), and i = 0, . . . , N ,
where the time step is ∆t = T

M and the space step is ∆x = Lend−Lin

N (M,N ∈ N). We use the
following notations uki = u(xi, tk), vki = v(xi, tk), wki = w(xi, tk), zki = z(xi, tk).
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3.2 Numerical scheme

Based on Mickens’ rules for the nonstandard finite difference schemes (cf. [46]), we obtain the
following new scheme for system (1.3):

uk+1
i =uki + α1

(
uki−1 + uki+1

)
+ a∆t−∆t(b+ 1)uk+1

i + ∆t(uki )2vki

+ c∆twki − c∆tuk+1
i − 2α1u

k+1
i , (3.1)

vk+1
i =vki + α2

(
vki−1 + vki+1

)
− 2α2v

k+1
i + b∆tuki −∆t(uki )2vk+1

i , (3.2)

wk+1
i =wki + α3

(
wki−1 + wki+1

)
+ a∆t−∆t(b+ 1)wk+1

i + ∆t(wki )2zki

+ c∆tuki − c∆twk+1
i − 2α3w

k+1
i , (3.3)

zk+1
i =zki + α4

(
zki−1 + zki+1

)
− 2α4z

k+1
i + b∆twki −∆t(wki )2zk+1

i , (3.4)

(3.5)

where αj =
dj∆t
(∆x)2 for j = 1, . . . , 4. Thus, the explicit formula is

uk+1
i =

uki + α1

(
uki−1 + uki+1

)
+ a∆t+ ∆t(uki )2vki + c∆twki

1 + 2α1 + ∆t(b+ 1) + c∆t
, (3.6)

vk+1
i =

vki + α2

(
vki−1 + vki+1

)
+ b∆tuki

1 + 2α2 + ∆t(uki )2
, (3.7)

wk+1
i =

wki + α3

(
wki−1 + wki+1

)
+ a∆t+ ∆t(wki )2zki + c∆tuki

1 + 2α3 + ∆t(b+ 1) + c∆t
, (3.8)

zk+1
i =

zki + α4

(
zki−1 + zki+1

)
+ b∆twki

1 + 2α4 + ∆t(wki )2
. (3.9)

3.3 Positivity, stability and consistency of the proposed scheme

By following the arguments in [29] it is not difficult to obtain the following results:

Theorem 3.1. Subject to the initial conditions of system (1.3) being non-negative, the numerical
scheme (3.6)-(3.9) demonstrates positive solutions.

Theorem 3.2. Subject to the initial conditions of system (1.3) being non-negative, the numerical
scheme (3.6)-(3.9) is stable.

Theorem 3.3. Subject to the initial conditions of system (1.3) being non-negative, the numerical
scheme (3.6)-(3.9) is consistent.

4 Numerical experiments

Let us now show the approximate solution of the coupled two-cell Brusselator system (1.3) in
order to demonstrate the changes in solution behaviour that arise when the parameters are varied.
The computer algorithm for numerical scheme (3.6)-(3.9) was written in Matlab. Throughout the
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simulations we considered the following initial conditions:

u0(x) =a+
cos(10πx)

2
,

v0(x) =a+ 1 +
sin(10πx)

2
,

w0(x) =
a+ b

4
+

cos(5πx)

2
,

z0(x) =
a+ b+ 1

6
+

sin(5πx)

2
.

The following sets of system parameters are considered for each simulation:

1. a = 2, b = 3.4, c = 2, Lin = 0, Lend = 2, T = 50, d1 = 0.01, d2 = 0.02, d3 = 0.001 and
d4 = 0.003.

2. a = 1, b = 3.4, c = 2, Lin = 0, Lend = 4, T = 50, d1 = 0.01, d2 = 0.02, d3 = 0.001 and
d4 = 0.003.

3. a = 2.3, b = 1.7, c = 3.4, Lin = 0, Lend = 5, T = 50, d1 = 0.03, d2 = 0.05, d3 = 0.03 and
d4 = 0.05.

4. a = 1.5, b = 2.78, c = 3.4, Lin = 0, Lend = 5, T = 150, d1 = 0.03, d2 = 0.05, d3 = 0.03 and
d4 = 0.05.

Remark 4.1. The approximate solutions depicted in Figure 3 and Figure 4 agree with the theo-
retical results obtained in [40] regarding the dynamics of such a system.
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Figure 1. Numerical simulation of a coupled two-cell Brusselator system (1.3) subject to the first
set of parameters.

Figure 2. Numerical simulation of a coupled two-cell Brusselator system (1.3) subject to the
second set of parameters.
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Figure 3. Numerical simulation of a coupled two-cell Brusselator system (1.3) subject to the third
set of parameters.

Figure 4. Numerical simulation of a coupled two-cell Brusselator system (1.3) subject to the
fourth set of parameters.
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